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SUMMARY

The development and the numerical application are presented of a
Reyleigh-Ritz, or modal, type of flutter analysis which takes into
account three-dimensioneal structural and serodynamic behavior. The
flutter mode is approximated by a series of natural-vibration modes,
and the aerodynamic forces corresponding to these modes are derived
from subsonic lifting-surface theory, according to the kernel-function
approach, for a finite wing oscillating in compressible flow.

The applicabtion is made to a delta semispan wing with & leading-
edge sweep angle of 45° which fluttered at a Mach number of 0.85. Results
of fiutter calculations show that, for this case, when the first three or
four natursl-vibration modes are used to approximate the flutter mode,
converged solutions for the flutter speed are obtained that are about
5 percent less than the experimental value. Theoretical flutter-speed
boundaries were located for a range of densities and Mach numbers
including those of the experimental-flutter condition. Further applica-
tion of the analysis to study the effects of verigstion in certain struc-~
turel properties showed thet the converged flutter speeds were more sen-
sitive to varistions in the naturael frequencies than to elther varistions
in mass or to the inclusion of generalized-masss coupling terms whose
existence is due to the use of experimental natural mode shspes.

INTRODUCTION

Current aircraft-design trends, such as the use of thinner struc-
tures and external stores on alrcraft capasble of very high speeds, have
combined to diminish flutter safety margins and have, consequently,
increased the need for grester accuracy in flutter prediction. As s
result, both the structural and the serodynamic aspects of the flutter
problem should be treated by use of more reslistic methods than by the
beam-theory and strip-theory methods commonly employed in the past. o
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This report illustrates the development and epplication of a method
of flutter analysis which takes intc account three-dimensional structural
and aerodynemic behavior. In treating the structurel problem, the flutter
mode may be epproximated by & series of either naturasl or assumed vibra-
tion modes which could have platelike distortlons or shapes. In treating
the aerodyneamic problem, lifting~surface theory 1s.used to obtain aero-
dynemic forces which take into account finite span and compressibility
as well as the modes of vibration of the structure.

In order to illustrate the applicatlon of the method, a number of
flutter calculations are performed. Primery attention is directed
toward correlation of the calculated result with an experimental flutter
result for & delts semispen wing with a leading-edge sweep engle of 45°
at a Mach number of 0.85. The calculstions are based on carefully meas-
ured natural-vibration modes obtained by means of an optlcal method. A
detailed description of the determination of these modes and of the mass
distribution 1s given in appendix A.

Other calculated results are presented for the same wing plan form
in order to show scme effects of variastions in air density and in Mach
nuber (for a Mach number range from O to 0.95). Related questions con-
cerning the number of modes required for convergence and certain effects
of nonorthogonality of the measured modes are considered. Numerical
evaluation of the elements of the flutter determinent is discussed in
appendix B.

SYMBOLS

Ay generalized aerodynamic force (see eq. (8))

agi) arbitrary constant in series form of pressure dis-
tribution (see eq. (17))

b locel wing semichord, ft

bo wing root semichord, ft

d distance between mirrors on wing surface and screen
for optical method of measuring modes, in.

F,(©) function based on chordwise pressure term (see

eq. (B2))

k) circular frequency, cps
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constants used in mmerical integration (see
teble VI)

dimensionless pressure mode (see eqs. (17) and (18))

structural demplng coefflcient

instantaneous deflection of point on wing surface
in the flutter mode, ft

normalized displacement at point x,y in ith mode of
vibration, hji(x,y)

chordwise integrating factor sppropriate to station ¢
(see eq. (B5))

spanwlse integrating factor appropriate to statlion s
(see eq. (B6))

surface integral in generealized aerodynamic force
(see eq. (B2))

kernel function of three-dimensional integral equa-
tion (see eq. (12)}), 1/sq Tt

dimensilonless form of three-dimensional kernel func-
tion (see eq. (14)) '

reduced-frequency parameter, bow/V

dimensionless pressure function (see eq. (5))

wing semispan, £t
Mach number

generalized mabks assoclated with ith mode of vibra-
tion (see eq. (3)), slugs

generalized-mass coupling term (see eq. (21)), slugs

locel mass per unit area at point x,y, slugs/sq It

number of sheets of aluminum foll on top or bottom
surface of wing
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local oscillating pressure difference between top
and bottom surfaces of wing in the flutter
mode (see eq. (4)), 1b/sq ft

pressure difference at point x,y in Jth mode of
oscillation, Apj(x,y)

generalized coordinate in ith mode of oscillation,

-~ iwt
Qe » Tt

complex amplitude of generallzed coordinate in
ith mode, £t ”

ares of wing surface, sq Tt
time, sec

thicknegses of aluminum insert, aluminum foil, and
balsa, respectively (see eq. (Al))

velocity of asirstream, fps

weight of wing per unit area, 1b/sq in.

Cartesian coordinates (see sketch following eq. (12))

dimensionless chordwise variables referred to by
(see eq. (1))

dimensionless spenwlse variables referred to 1

(see eq. (14))
airfoil ordinate (see eqs. (A2) and (A3))
local slope of wing in pitch during vibration, oh/dx

local slope of wing in a direction normal to line
(or ray) of constant percent chord

vectors representing angulsr displacements o and
o', respectively, according to the right~hand
vector rule (see eqs. (A5) and (A6) and fig. T)

unit weights of aluminum alloy and laminated belsa,
respectively (see eq. (Al)), 1b/cu in.

reflected displacement on screen in optical method
for measuring mode shspes, In.
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By By

streamwise and spanwise components, respectively,
of &

angular chordwise variasble (see eq. (19)), deg

angle of sweepback for rth ray, deg

generalized mass-density retio in ith mode of vibra-
tion (see eq. (10))

air density, slugs/cu ft
local slope of wing in roll during vibration, oh/dy

local slope of wing in & direction parallel to line
(or ray) of constant percent chord

vectors representing enguler displacements ¢ and ¢',
respectively, according to the right-hand vector rule

angle of image, referred to the horizontal, on screen
in opticel method for meesuring mode shapes, deg

complex eigenvalue of determinantal flutter equation,

2
(ﬂ) (1 + 1g)

w

engular frequency, 2xf, radians/sec

chordwlse and spanwise stations, respectively

flutter

modes of vibration under considerstion

chordwise and spanwlse pressure modes, respectively,
in aerodynemic quantities (m denotes power o
which spanwise variable is raised; see eq. (18))

line (or raey) of constant percent chord on wing

streamvise direction (related to local pitching
direction)

spanwise direction (related to local rolling
direction)
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Matrix notations:

[] " rectanguler matrix )
L] row matrix

{ } column matrix

F diagonal metrix

Dots over symbols dencte dlfferentistion wlth respect to time.
METHOD OF FLUTTER ANALYSIS

The present section 1s concerned with the development of a working
form of the flutter equaetions of a Rayleigh-Ritz, or modsl, type of
snalysis based on aserodynamlic forces obtalned by subsonic lifting-surface
theory. A brief dlscussion of the method of obtaining the aerodynamic
forces 1s included. -

Development of Flutter Equetions »

In the development of the flutter equations, a baslc assumption of
the Rayleigh-Ritz aspproach is thet the displacement h(x,y,t) corre-
sponding to the flutter mode may be represented by a superposition of
either natural or assumed modal functions in the form

h(x,y,t) = q;b) + gohp + . . . (1)

where q3 = ﬁ'iei“’b is the genersalized coordinate of the ith chosen mode
and hj = hi(x,y) 1s the corresponding normalized mode shape.

In the present Investigetion the normalized modal functions hj

are chosen as the natural (orthogonal) modes of vibration of the struc-
ture under consideration. With thils cholce of mode shapes, the general
equation of motion (obtained, for exemple, as in ref. 1) in the ith
degree of freedom may be written Iln the form '

Mi'q‘.j_ + “312Mj_q.i = f hy AP(X:Y)t) as ) (2)
S

b
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where Mj represents the generalized mass in the 1th mode and is defined
as

My = ﬂm(x,y) hizdS (5)
S

The integral on the right side of equation (2) represents the generalized

serodynamic force and contains the serodynamic loading Ap(x,y,t) which,

consistent with equation (l) » 18 regarded as a superposition of
serodynsmic-loading modes

bto(x,y,t) = Q AP]_(X:'.Y') + Qo APZ(X,:Y) + .00 (&)

where 4Ap j (x,y) denotes the serodynamic loading associated with the

- 1wt
mode shape hj. In application, with q = q_le ) AP(X:Y:t) is
expressed in terms of dimensionless functions Lj through the relation

q:
Ap(x,y,t) = LmpvabZ <

9 Lot
+ — + . .« o]€E
boLl boLa

(5)

The form of the complex functions Lj 1s dealt with at a later stage.
At this stage, use may be made of equations (1) and (5) to obtain equa-
tion (2) in the form

0 \2 _ uev®s - _
1-(-51) Miqi+bz—2m2— ghi(q1a+%%+. .JDas =0 (6)

or, alternstively,

2
Mikg
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where
A =ﬁ j]hiLJ as (8)
0
S
and
b
o

If equation (7) is written for each of the degrees of freedom under
considersation, a set of simultaneous homogeneous equations results. The
flutter condition 1s then given by the vanlshing of the determinent of

the coefficients of 9 in these equations; thus,

2 .
A A
L - (ﬂ) @ v 1L 12 .
L ko h1 ko1
2
A A
21 1-(2)94-" 22 « v =0 (9)
ko Ho %) kP
where -—
Y0 1%
L TPt Po - (10)
My My T

and wvhere § 1s defined by

2 _
Q= <-mi-> (1 + 1g) (11)
[4}]

In this form Q 1s & complex elgenvalue and contains the unknown fre-
quency o and a damping coefficient g that becomes zero at the border-
line flutter condition hetween demped and undamped motion.
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Equation (9), together with the definitions given in equations (3),
(8), (10), and (11), constitutes the working form of the flutter equa-
tion. In other sections of the report the determinstion of the ingre-
dients of equsastion (9) is discussed; appendix A is concerned with the
determination of mode shapes and mass distribution for a particular con-
figurstion, and eppendix B deals with numerical techniques used to
evaluate generalized masses and generalized aerodynemic forces.

Determination of Aerodynamic Loading

In the determination of the aerodynamic loading, the functions LJ

required in the generalized serodynamic Fforces sre cobtained from the
integral equation which relates 1lift snd downwash distributions in sub-
sonic lifting-surface theory. (See, for example, ref. 2.) A systematic
numerical solution 1s employed herein which is similar to that of refer-
ence 3 but which makes use of a more exact form of the kernel function
together with more refined mumerical-integration procedures. The method
employed hes been programed for the IBM type TOk electronic data pro-
cessing machine.

For the purpose of the present investigation, the integral equa-
tion maey be written as

{2y iw -1 ﬂ" - Y
(Bx + V) h(x,y,'b) ll-ﬁpVE K(M,V;x €,y Tl) AP(E;ﬂ’t) 4dg dn (12)
S

where the coordinate-axis system is shown in the following sketch:

— /

> ¥,
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where gze end £ denote, respectively, the coordinates of the

leading and trailing edges. The term on the left side of equation (12)
denotes the downwash engle at point x,y associasted with a displacement
h(x,y,t). On the right side of equation (12), the kernel function

K(F,%,x-g,y-n) represents the downwash produced at point X,y by a unit
pressure load at point &,n; the function Np(E,n,t) represents the load
required to satisfy the specified downwash condition. (The minus sign
on the left side of eq. (12) is associlated with the form of the kernel
function end arises from the use Herein of the sign convention for down-
wash, displacement, end 11ft which are positive downward. )

Substituting equations (1) and (5) into equation (12) gives

3, 1w\ =
_<§; + ?? (qlhl + goby + . .)

= b D vt ,v- Ei Eg
= B0 ﬂK<M,V’x €,y Tl) <b0 + o Ip + . . -) dg dan (13)
S

Introducing the following dimensionless quantities

\

x==x :

bo
=5
3 -
v=12 > (14)
7=1
E 1
E(M:ko,i-g,:)—r-ﬁ) = 12 K(&%’,X-&:%ﬂ)

/
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into equation (13) gives

q,
{2 4 kg lhl+—2h2+.
X bo bo

= ﬂK(M,kO,E-E,S;-ﬁ) ql In + = = IQ + . . . at dag (15)
0
S

From equation (15) the form of the integral equetion for the jth
mode of osclllation may be seen to be

a [ —
-<a_§ + ugo)hj = g K(M,ko,x-E,y-1) Ly d& dn (16)

In the solution of equation (16), it 1s assumed thet a function Ly may
be represented by a series of pressure modes of the form

_ (B,
Z Z anm ' T, (17)

where the quantities 31(31%) are arbitrary constants to be determined.
The Indices n and m are associated with chordwise and spanwise pres-
sure modes, respectively. The form of the functions Iy, i1s dictated

by known leading- and tralling-edge conditions. In subsonic flow they
should satisfy the edge conditions pertinent to the Kutta condition. In
the existing procedure for solving the integral equation they have been
expressed (in terms of an angular chordwise varisble 6) as

,, 2b
—Qcot

I

1 ‘/1 -7 1ibo-asin )

- 2P0 gin 26
T = 1l - — —
2m = T K b I

fom

v

(18)

3
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where, for example, for symmetric motion the index m 1s equal to
0, 2, 4, . . . snd where the varisble 6 (see sketch which follows
eq. (12)) is related to ¢ by the expression

Eio T E
.Ee___ZE - b cos O (19)
2 bg

t =

£y + €
in which —EE————EE

denotes the equation of the wing midchord.
If the series form of Lj glven by equation (17) is substituted

into equation (16}, a working form of the integral equation 1s cbtailned
as _

_@; . iko)ha - Z; o{d) é[ £ K(M,kq,%-E,y-1) dE dan (20)

and mey be seen to consist of a summation of definite surface integrals,
egch welghted by en unknown constant agg).

In order to determine the constents apy, a collocation procedure

is used. The right side of equation (20) is evaluated for as many
points x,y, designated as control points, as there are unknown
constants &anpym end 1s equated to the known downwash angle at each con-
trol point. A set of simmltaneous equations is thus obtalned which mey
be solved for the values of app. Once determined, the constants apy

are used with equations (17) end (18) to define the pressure function Lj;

and Ly may then be employed in equation (8) to obtailn the generalized
aerodynamic forces Aij' In the present application nine terms of the

series in equation (17) were used (so that n =0, 1, 2 and m =0, 2, 4),
and the downwash was satisfied at the nine control points shown in fig-
ure 1(a). As previously noted, a solution of the integral equation as
represented by equation (20) has recently been programed for the IBM type
TOL electronic data processing machine. .

APPLICATION OF METHOD TO A DELTA WING

In order to show the aspplication of the analytical treatment described
in the preceding sectlon, a number of calculations have been made for a

Lo
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delta semispan wing with a leading-edge sweep angle of U5°. Primary
gttention i1s directed toward a correlstlion of calculated results with
an experimental-flutier result. Other calculations are performed for
the configuration of the experiment to explore some effects of varying
Mach number and air density. In sddition, some effects of varying mass
and natural frequencles and ceritain effects of nonorthogonality of the
measured modes are examined.

Correlation of Calculations With Experiment

The experimental result used as a basis for the calculations has
been obtalned by William T. Lauten, Jr., end Marvin F. Burgess at the
Langley Aeronauticel Leborstory. Construction details of the 45° delta
semispan wing under consideration ere shown in figure 2. The mass prop-
erties of the model are shown as chordwise and spanwise distrlibutions
of weight per unit area in figure 3. The mode shgpes in the first four
natural modes of vibration were obtalned by means of an optical method
and are shown in figure 4. Detalls of the methods used in obtaining
mass and mode shapes are described in appendix A.

Two models were involved ln the experimental progrem. One, des-
ignated as model A, fluttered to destructlon before its mode shepes and
mass distribution had been determined. These structural properties
were obtalned by use of a second model, model B, which was built to the
same specifications and had very similesr nodal patterns. As can be seen
in table I, model B wes lighter than model A end had different nabural
frequenciles. In all flubtter calculations the mode shapes for model B
were used, and in the calculations for model A the generalized masses
were adjusted by the ratio of the total masses of the models.

The flutter celculation of primary interest has been made for
model A, which fluttered as a cantilever at a Mach number of 0.85 with
an air density of 0.000787 slugs/cu ft. Results of this flutter cal-
culation are shown in table IT(a). Converged flutter-speed solutions
are obtained (as indicasted by the agreement of the first three- or four-
mode calculations) which are sbout 5 percent less then the experimental
value. Calculated results based on two two-mode subcases are included
in table II(a). The flutter speed calculated with modes 1 and 3 is
gbout 2 percent sbove the experimental flutter speed. It is noted that
medes 1 and 3 resemble, respectively, first~bending and first-torsion
modes of a beam.

Variations in Mach Number and Air Density

Results of converged flutter calculations at other values of Mach
number and air density for the configuration of the experimental flutter
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condition are given in table II(b) and are presented, in different forms,
in figures 5 and 6. Figure 5 illustrates the effect on Ve of varying

density, with Mach number held constant at 0.85. Results are shown in
terms of an alr-density parameter l/JE. The effect of Mach number on
calculated flutter speed is shown in figure 6 for each of three values
of air density p. Resulls are presented in terms of e flutter-speed
coefficlent Vf/bO@B. As can be seen, the flutter speeds calculated for

the present configuraitilion eppear to remain nearly constant for all Mach
numbers up to M = 0.95. The corresponding calculeted flutter frequencies,
on the other hand, tend to decrease with increasing Mach number, as may

be seen in teble II(b).

Effects of Certain Structural Modificstions

The effects of the dlfferences in total maess and natural frequencies
between models A and B, noted in teble I, were considered worthy of fur-
ther study. First, flutter calculstions were performed for model B, and
the converged flutter speed was 10 percent less than that for model A.
(Compare case 1 of table II(c) with the four-mode result in teble II(a).)
In an effort to separate the effect of the difference in total mass from
the effect of the dlfference 1n natural frequencles, additional flutter
calculatlions based on the generalized masses of model B and the natural
frequencies of model A were performed. The results, listed in table II(c)
(case 2), show that about three-fourths of this 1lO-percent difference in
flutter speed was due to the differences in the natural frequencies
between the two models. The remeining difference In flutter speed is
then attributed to the difference in total mess.

As cen be seen in equation (9), the offdiagonal elements of the
flutter determinant contain no inertial-coupling terms. This is a con-
sequence of the orthogonaslilty condition for netural coupled modes, which
mey be expressed as '

Mijy = ffm(x,y) hihy &S = 0 (1 £3) (21)
ES)

It is recalled that, in the present anslysis, measured modes were
erployed. In order to investigate their orthogonality, values of Mij
were computed for model A by use of equation (21) and are listed in
table ITII. In order to determine the effects of the nonzero values

of Mjj, they were added to the appropriate elements of equation (9)

and two celculations were made for model A. First, the aerodynamic
terms were eliminated and the natural frequencies were computed; results
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are shown in table ITI and, with the exception of f), are seen to differ

by & negligible amount from those in table I. In a second calculation the
change in flutter speed due to including the Mij terms was determined;

the other paremeters used were those of the four-mode solution of
table II(a). Results are listed as case 3 of table IT(c) and show that
the converged flutter speed has been decreased by less than 1 percent.

CONCLUDING REMARKS

The development and the numerical application have been presented
of a method of flutter anelysis which takes into account three-dimensionsl
structural and serodynamic behavior. The flutter mode was epproximsted
by a serles of natural-vibration modes, and the aerodynamic forces cor-
responding to these modes were derived from subsonic lifting-surface
theory, according to the kernel-function approeach, for a finite wing
osclllating in compressible flow.

The application was mede to a deltas semispan wing with a leading-
edge sweep angle of 45° which fluttered at a Mach number of 0.85.
Results of flutter calculstions show that when the first three or four
natural-vibration modes were Included, converged solutions for the flutter
speed were obtalned which were about 5 percent less than the experimental
value. Further aspplication of the analysis was made to orient the experi-
mental flutter condition with theoretical flutter-speed bounderies for a
range of densities and Mach numbers including those of the experiment and
to study the effects of certaln varlations in natural frequencies and
total mass.

Langley Aeronautical Iseborstory,
National Advisory Committee for Aeronautics,
langley Field, Va., July 17, 1958.
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APPENDIX A
STRUCTURAL PROPERTIES OF DELTA-WING MODEL

The structural properties of the delta-wing model needed for the
flutter analysis that is presented and applied in this report consist
of the mass distribution and the natural modes of vibration, which are
represented in equatlons (3) and (8) as m(x,y) and hy, respectively.

This appendix provides a description of the methods used to determine
these properties for the delta-wing configuration considered in this
analysis.

Description of Model

Figure 2 shows pertinent details of the construction of the model.
This construction consisted of & 0.02-inch-thick sheet of aluminum alloy
located at the plane of symmetry with verticelly lasminsted balsas glued
to each surface of the sheet. The balse laminations were shaped to the
ordinates of an NACA 65A004 airfoil section, and the outside surface was
wrapped with layers of 0.00l-inch-thick aluminum foll. The wing tip was
rounded so that the semispan was 32.85 inches at a point 1.5 inches for-

ward of the trailing edge. The aerodynamic aspect ratio, with the assump-

tion of & straight or squared-off tip based on extensions of leading and
trailing edges to a common point, was 3.5k4.

Two models were Involved, both bullt to the same specifications.
One model, designated as model A, fluttered to destruction before all of
its properties were determined; the other model, model B, was used to
obtain the mass distribution and experimental natural-mode shapes for
these elements. Certain mechanlicel properties of both models are com-
pared in table I. :

Mass Properties of Model

The mass properties of hoth models studied in this investigestion
are based on the chordwise and spanwlse distributions of weight per unit
area shown in figure 3. These distributions were calculated from the
equetion

V=7, (tI + tF) + Ygty (A1)

where W, 1s the weight of the wing per unit area, 7, is the unit
welght of aluminum alloy, ty; is the thickness of the aluminum insert,
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tp 1s the thlckness of the aluminum foll, tg i1s the thickness of the
laminated balsa, and 74 is the unit welght of laminated balsa. The
velue of 7p, which was determined from the measured total weight of the

wing and the volume occupied by the balsa, was found to be 0.01007 lb/cu in.
By using this value together with Yp = 0.100 lb/cu in. and the data given

in figure 2, equation (Al) can be written in the form

W, = 0.100(0.020 + 0.002N) + 0.01007[hszb - (0.02 + o.oozn:)] (A2)

everywhere on the wing except in the regions of the leading and trailing
edges which were covered by an additional layer of aluminum foil which

was l% inches wide on each surface. The consequent incresse in weight

in these edge reglons was sasccounted for in the equetion

W, = 0.100(0.022 + 0.002N) + 0.01007@8&, - (0.022 + o.ooan)] (a3)

In equations (A2) and (A3) N is the number of 0.00l-inch-thick
sheets of aluminum foll on each (top or bottom) surface of the wing, and
Z is the ratio of one-half the local thickness to the local chord for

an NACA 65A004 airfoil.

Optical Method of Measuring Natural-Vibration Modes

The natural-vibration modes were obtained from the results of shake
tests conducted at zero airspeed and involving the use of an electro-
dynemic shaker. The sheker was located near the wing root in order to
reduce as much &as possible the effect of the shaker mass on the natural
modes. For each natural frequency found, the corresponding mode shape
up through the fourth mode was determined by application of an optilcal
method described in this section. This method involved the measurements
and numerical integration of local slopes in pitch and roll directions
at 24 stations distributed over the wing surface.

A schematic diagrem of the apparatus used in this optical method is
shown in figure 7. Small mirrors that were l/l6'inch square were glued
to the wing at six sbations along rays at 25, 50, and 75 percent chord
end along the trailing edge as shown in the mirror lattice in the upper
left corner of the figure. ILight aimed at the wing was reflecled by the
mirrors onto a screen located a considerable distance from the model.
During vibration in a natursl mode, imsges reflected from these mirrors
eppeared.as straight lines whose lengths and directions were marked on
the screen. These measured lengths and directions were resolved into
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locel pitching and rolling slopes for small values of a and ¢ by
the relations '

o}
a =~ Eg é% cos V¥

¢ ~of

It should be noted that, although this relation is shown for an instan-
taneous position of the model from equilibrium, it also applies when B
corresponds to a double amplitude, as is the case during vibration. The
distance d in this application was 155 inches.

(ak)

5% gln ¥

The local slopes in pitch and roll were obtained at six stations
elong each of four rays at 25, 50, 75, and 100 percent chord. Deflec-
tions ‘along each ray were determined by nurierically integrating spanwise
curves faired through the six values of ¢' along the ray. The vec-

tors a, 4', a, and a' indicated in the lower left corner of fig-
ure T represent angular displacements a, o', @, and ¢’, respectively,
according to the right-hand vector rule, and from this vector relationship

o =a' cos A. + @' sin A
(A5)
¢ = -a' sin A, + ¢' cos A
from which
@' = ¢ cos A, + « sin A, (A6)

Thus, for the ith natural mode, after substitution of equation (Ak) into
equation (A6),

(1)
¢ = ¢'(:;:) = %&L sin@(sir) + Ar) (1 =1,2,3,4) (AT)

where the subscripts s and .r 1identify a point on the mirror lattice

as indicated in the upper left corner of figure 7. Values of ¢'§;)

determined from this equation are given in table IV. For modes higher
than the first mode, the sign of the angle""WQi) + Ar was governed by
the observed node locations on the rays rather than by the actual numer-
ical value of this angle.
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These slopes were in turn used to determine the deflections by
numerically integrating spanwise curves faired through the six values
of @' along each ray. A check of the data disclosed that, for any
point on a partlicular ray, the deflection obtained in thls manner was
in very close sgreement with the deflection obtained by integrating ¢'
along the tralling edge to the spanwise position of the point and then

by integrating the curve faired through four chordwise values of aéi)

forward of the trailing edge to the polnt itself. On the basis of this
check, the normalized deflection curves shown in figure & for the first
four modes have been adjusted to be compatible with the measured values

of mgi) glven in tesble V.

The integration of @' along a ray was performed by means of the
direct-summation method illustrated in reference 4 with the use of 10
equally spaced stetions for the first mode, 15 to 17 stations for the
second mode, 11 to 14 stations for the third mode, and 18 and 19 sta-
tions for the fourth mode.

The nodes shown in figures 4(b), k(c), and 4(d) trace out very
nearly the same paths observed on model A, particularly in the outboard
region of the wing plen form. Because thils similarity is a good, though
not complete, indication of mode-shepe similarity between the two models,
the mode shapes used to calculate the generalized masses of model A were
assumed to be the same as those measured for model B.



20 NACA TN 4395

APPERDIX B

EVATUATION OF ELEMENTS OF DETERMINANTAL FLUTTER EQUATION

AND APPLICATION TO A SPECIFIC CONFIGURATION

Evaeluation of Generalized Aerodynamic Force

In order to evaluate the generalized aerodynemic force Aij

(eq. (8)), use is made of the dimensionless variasbles introduced by egqua-
tion (14%) and the pressure function Lj glven by equations (17) to (19)

to write equation (8) as
1 14 \!—‘2 2
- o= -] =
Aj—ff h:Ll yIE:ot2<aoo+ya02_+...+
0 Jo
in © + 55
sin Olagg + F aqp + -« .

-2 -
ifsin-29(a20+ya22+ . .)+ . .:Isine de dy (B1)

In the evaluation of this equation, the followlng deflnitions sre useful:

F.(6) =cot £ sin 8 = 1 + cos © )
0 2
2
F,(8) = sine
> B2
Fp(6) =  sin 20 sin 0 (B2)
1 T
o 2 -
I(i)=f f yy1L -F F_(8) n, as ay
nm n 1
0Jo )
Equation (Bl) msy be written in terms of the integral I( ) ag the

summation .

ZZ (i) (J) (85)
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or, as the matrix product

(1 (1) (1) :
Ai,j = [Imi, {&I(lgl)] = LIOO . e . Inm .- . J P < (B)-l-)
(3)
anmJ

Numerical integrating techniques can be epplied to evaluate the
surface integrals I, in the row matrix of equation (Bk4). (It is

noted in this connection that the use of the angular coordinate 6 in
the chordwlse Integration 1s particularly convenient for this applica-
tion. For example, when represented in Carteslan coordinates, the first

term in the integrand of Iéi) is infinite at the wing leading edge;

when expressed in polar coordinates, the product cot % sin 6 1s a non-

singular function.) A number of spanwise stations may be chosen at
y = is with appropriate spanwise integrating factors I,. Simllarly,

at each spanwise station, & number of chordwise stations are selected at
8 = 8, with appropriate chordwise integrating factors I.; 8 &and c

thus’ identify stations on an integrating lattice such as that shown in
figure 1(b).

A mgtrix product of chordwise terms may be formed as

_(;-—)

n
Hr R(e) I Fo(02)

T O [ A S

and a matrix product of spanwise terms may be formed as
i 2 5
i Ilvl - ylz Iy Jl - ¥y
B g 2

- -m —
;[Y] = [Ié"l[ys 41 - YSE] =
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The normelized displacements hy at the Integrating stations may be
arranged in a rectangular matrix of the form

.
By (61,71 ) 6(01F2) - - 21(02%)
hi(ez’yl)

| e
hi(ec’§i)

(1)

Equations (B5) to (BT) mey be used to obtain the surface integrals I
of equation (B2) from the matrix product

m— m
111(1) = [e]in | |¥ (B8)
nm ’[][ﬂ[]
The elements of the rectangular matrix on the left side of eguation (B8)
may then be rearranged as the row matrix l;gi?J of equation (B4) and be

used with the values of the constants aﬁiy to obtain the generalized

aerodynamic force A;y. Equation (B4t) may, of course, be expanded for
any mumber of modes into

D‘n Ay - . Ai; - ]
[_(1) W[ @ (3)
A2l ) . . IOo . .. Inm aéo) e« . aog
) = : : N : : (B9)
I(;) . . aii) . .
Ail . . . 00 J0u J
. -
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Evalustion of Generalized Mass

The generalized mass Mi is expressed as a surface Integral by

equation (3) and may be evaluated by use of the same matrices of inte-~
grating factors and displacements employed in eveluating the generalized
aerodynamic forces Aij' For this purpose, eguation (3) may be written

in terms of the variables defined by equations (14) and (19) as

1l Ax
2 - —
M; = byl j; fo hy m(el,y) % gin 6 40 &y (B10)

or, as & summetion which involves the integrating factors Is and I,
used with Aij’ in the form

b P 2
S —
M, = byl E E T B¢ e m(6,7s) By (Sc,ys)sin 0, (B11)
s C

or in terms of a matrix product as

c— c

b _ 2te 7\
I‘L_L = -boz Z IS .B?S)_ m(ec’ys) IC sin ecJ J'{hi (Gc,ys)} (BlE)

]

The column matrix {hié}, which pertains to & particular spanwise sta-

tlion, may be obtained by squaring the elements in the corresponding
column in the matrix [hi] (eq. (B7)). The inertial-coupling term Mij

(eq. (21)) 1s found by replscing the matrix {Piz(ec’ﬁéj} in equa-

tion (B12) with & matrix of crossproducts {Fihj} for 1 # J.

Application of Method to a Specific Configuration

In the application to & specific configuration of the integrating
procedures discussed in the previous sectlon,  either equal or unequal
intervals in a gliven variable may be taken. With equal intervals,
appropriate integrating factors are readily available; when unequal
intervals are employed, corresponding integrating factors must be devel-
oped. Useful procedures relating to numerical integration are presented
in reference 5.
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In the present spplication to the flutter of a delta wing, 10 equal
intervals in the chordwise variable © and 8 equal intervals in the
spanwlse variable ¥ were used. The integration stations are shown in

figure 1{(b). Chordwise integrating factors Ic employed are based on a

rule employing overlepping quintic functions derived in reference k4.

Spenwise integrating factors I, were based on a rule which employs

overlapping quartic functions. Data pertinent to the evaluation of the

factors I, and I, are given in table VI.

Normelized mode shapes hy employed in obtaining both generalized
force Aij and generalized mass Mi were obtained from the plots of

figure 4. The normalizing station for each mode was arbitrarily located
on the midchord at y = 0.875. Values of mass per unit area m(ec,?s)

for use in determining M; were obtalned from the weight distribution
shown in fligure 3. The components g%i and hj of the downwash angle

employed as & boundary condition in equation (20) are listed in table VII
for the control points shown in figure 1l(a).
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TABIE T

NACA TN 4395

CERTATN MECHANICAL PROPERTIES OF DELTA-WING MODELS

Item Model A Model B
Aspect ratio (sq_ua.red-off tip) . 3.54 3.54
Airfoil section . NACA 65A004 |NACA 65A004
A, deg:
Leading edge . . .o 45 L5
25 percent chord (r = 1) 36.83% %6.83
50 percent chord (r = 2) . 26.58 26.58
75 percent chord (r = 3) . e 14.03 14.03
Trailing edge (r = 4) . o} 0
by, £t - .. 1.458 1.458
t, £t . . 2.739 2.739
Potal mass of W:Lng, 1b-sec2/ft . 0.1789 0.164k
Natural ffequencies, cps:
FPirst mode . . . . 21 21
Second mode . 58 52.5
Third mode . 81 77
Fourth mode 115 107
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TABLE IT
RESULTS OF FLUTTER ANALYSIS AND CORREIATION WITH EXPERIMENT
(a) Correlation of theory and experiment for model A
(M = 0.85; p = 0.00078T slugs/cu £t)
Modes used Ve, fes kg
in anslysis £ps cps o
1,2 2,1;5 ;{3.5 o.iaso
1,3 3 1.5 103
Results of calculations . . . « . . . 1, 2,73 882 40.0 115
1, 2, 3, & 876.5] 39.8| .46
Experiment .« « « « « o « o & s o o of =—mmmcm———— o2k 37.9 ] 0.37>
(b) Results of converged flutter calculstions at other Masch numbers and densities
(Four modes used in analysis)
M slugs?cu £t fgﬂ cps ko,f M slugs?cu £t fP; cg; ko,f
Oggolzg’-'; l,% Eg.z 0.229 o] X 916 53.2 0.535
. . 511 . 930 J2. <213
0.85 .0021 618 | k2.5 .630 T 0.000787 920 | k6.0 158
.00326 554 | 43.9 .T26 .95 928 38.0 375
0 )y 1,129 53%.0 0';:31? 0 N 725 54.2 0.273
. 1,133 51.2 42 . T4 52. 650
7 0.00050k 115 | 5.5 3l 7 0.001267 2 | 16.8 .570
.95 1,075 36.9 315 .95 792 ko.2 188
(c) BEffects of structural modifications
(M = 0.85; p = 0.000787 slugs/cu £t)
Results of converged
Mi solutlions
Cese Model (1 ;1‘1)
Ve Tes Ko,z
fps eps s
1 B 0 797 38.2 0.439
2 (a) 0 857 | 40.0 428
3 A Ronzero 872 39.0 k10

e
The model combined the generalized massses of model B and
the natural frequencles of model A.
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TABLE IIT

NACA TN 4395

GENERALIZED MASSES AND CORRESPONDING CALCUIATED NATURAL

FREQUENCIES COMPUTED FROM EQUATION (21) FOR MODEL A

) M,,, slugs, for velues of J of — £,
1 2 3 b cps

1 0.010376 -0.0015128 0.0034925 -0.026760 20.95

2 -.0015128 .0159856 -.0139947 - .0645656 57.2

3 0034925 -.0139947 | 1.243043 - .O4T1072 81.6

L -.026760 - . 0645656 - .0k 71072 2.897119 125.7
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TABIE IV

MEASURED S1OPES ¢' (1) OF NATURAI-VIBRATION MODE SHAPES
sr

CALCULATED BY MEANS OF EQUATTON (A7)

Semispan r=1 r=2 r=23 r =1Lk

i|s |station, | (25 percent | (50 percent | (75 percent | (trailing
percent chord) chord) chord) edge)
1 20 0.280 0.727 1.096 1.350
2 35 1.048 1.570 1.870 2.550
113 50 2.298 2.964 3.410 Ik .080
y 65 L .o01 k. hos5 k. g7 5.28%
5 80 5.842 6.373 6.755 6.794
6 90 T-T0T7 T-937 7.916 7.621
1 20 -0.658 -0.786 -1.243 -1.873
2 35 -1.150 -1.208 ~-1.526 “1.777
513 50 -.995 -.605 -.175 481
b 65 .992 1.888 2.868 k.o12
5 80 6.029 T7.245 8.683 10.046
6 90 11.938 12.558 12.978 12.915
1 20 0.891 0.659 -0.968 . =3.355
2 35 1.037 .065 -1l.262 =3.117
3 50 .783 -.205 -1.055 -1.207
31h 65 -.1195 -.259 -.136 1.217
5 80 -.622 125 1.539 3.636
6 90 -.4505 1.012 2.854 . o87
1 20 0.436 0.455 0.667 1.538
2 35 .303 .239 .2h3 -.356
yi3 50 -.591 -.987 =1.k92 -3.022
L 65 -1.830 -1.720 -1.877 -2.200
5 80 373 1.486 3.017 4. 788
6 Q0 T.963 9.029 9.196 8.772

g
Each slope may be obtained by multlplying the corresponding
value in the teble by 0.003225.
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TABILE V

NACA TN 4395

MEASURED SIOPES IN PITCH mgi) OF NATURAL-VIBRATION-MODE SHAPESa

Semispan r=1 r=2 - r=3 r =4
i|s |station, | (25 percent | (50 percent | (75 percent | (trailing
percent chord) chord) chord) edge)
1 20 0.1063 0.204 0.0968 -0.166
2 35 572 540 L8k 045
3 50 1.19 1.16 .854 .610
L 65 2.015 1.83 1.655 1.416
5 80 2.735 2.69 2.62 2.47
6 90 3.61 3.355 3.34 3.315
1 20 -0.205 -0.221 -0.174% -0.164
2 35 -4h6 -.2895 =473 -.T55
3 50 .1208 -.0836 -.348 -1.13
2|k 65 1.02 .931 g9 - .2k55
5 80 3.54 3.01 2.98 2.32
6 90 6.18 5.80 5.59 5.49
1 20 -0.07h -1.29 -1.295 -1.78
2 35 -.556 -1.713 -3.05 =l 1k
A E 50 -2.015 -3.495 -5.05 -6.50
4 65 -4.19 -5.26 -6.65 -7.69
5 80 -6.26 -6.94 -7.70 -8.15
6 90 -7.55 -7.58 -7.85 -7-.98
1 20 -0.172 0.067 0.335 0.835
2 35 .028 .08k 483 1.426
3 50 - 47 -.301 .082 A479
b1y 65 791 -.183 -.T43 -1.270
5 80 .T90 .T67 oyl -.h61
6 90 4.515 4.172 3.640 2.957

8
Each slope may be obtained by multiplying the corresponding

value in the table by 0.003225.




(a) Chordwise integration (Ic =

TABLE

Vi

DATA EMPLOYED IN NUMERICAL INTEGRATION

Chordwise station, ¢

1 2 3 b 5 6 T 8 9 10 11
6,, deg 40 (18 |36 |54 72 |90 [108 |126 b 162 {180
T, oo oo e 38| 1.50{ 1.00| 1.00| 1.50| .76| 1.50| 1.00{ 1.00| 1.50

(b) Bpanwise integration (Is = ﬁ%-&ifa; AY = 0.125)

Spanwise station, =

1 2 3 L 5 6 T 8 9
g s 0 0.125 [0.250 | 0.375 | 0.500 | 0.625 | 0.750 | 0.875 |1.000
£, T |32 12 32 1h 32 12 32 T
bg /by 1.000{ .8827| .7654| .6480| .5307| .hask| .2961| .1788| 061k

GoEh NI VOVN
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TABIE VII
DOWNWASE BOUNDARY CONDITIONS EMPLOYED IN EQUATION (20) FOR
MEASURED RATURAL-VIBRATION-MODE SHAPES
femis Pirst mode Second mode Third mode Fourth mode
pan
c;gﬁzl station,| dn) ay -3hs dhy,
T |percent | 2= f M | ST =l T Il
(a)
1 0.02096|0.0175]-0.1015 |-0.07015| -0.348| 1.500]|-3.24| 2.50
2 20 .04025| .0350f -.1094 | ~.14Ok | -6.065] .833| 1.26| 2.00
3 .0191 | .0594| -.0862 | ~.1666 | -6.095]-1.08%| 6.30] 3.67
u 0.235 |0.1784} 0.05985|-0.4515 -9.&8' k.33 |-8.93] 3.165
5 50 .229 2h12) -.04135) -.4605 |-16.45 | 1.00 |-5.6T] 2.667
6 .1684 | .2869] -.1722 | -.4955 |-23.79 [-4.165| 1.54} 1.33L
7 0.540 [0.731 | 1.751 | 0.1053 |-29.45 | 4.375]14.8T}-11.66
8 80 5315 | J79% | 1.490 .268 |-32.65 625F1h k1{-11.16
9 ST .8535| 1.475 A6hg 1-36.15 |-3.75 | 6.98]-10.0

a
Control points are shown in figure 1(a).

14

G6CH NI VOVN



NACA TN 4395

=08

25% 75 %
chord chord

(a) Control points.

[

x = by=b(l + cos &)

(b) Numerical integration.

Figure 1.~ Lattices used in evaluation of elements of flutter determi-
naent for 45° delte semispan wing.
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Figure 2.~ Construction detalils of delta-wing model.
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(2) Chordwise distribution.

Figure 3.~ Weight distributions of model.
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(b) Spanwise distribution.

Figure 3.~ Concluded.
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(a) First mode. Frequency, 21 cps.

Figure 4.~ Experimentel natural modes of vibration.

Daghed curves indicate extrapolations.
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(b) Second mode. Frequency, 52.5 cps.

Figure 4.- Continued.
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(c) Third mode. Frequency, T7 cps.

Figure 4.~ Continued.
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(d) Fourth mode. Frequency, 107 cps.

Figure 4.~ Concluded.
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Figure 5.~ Effect of density on celculated flutter speed for a Mach num-
ber of 0.85.
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Figure 6.- Effect of Mach number on caelculated flutter speed for various
densities.
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Figure T.~ Schematic disgram of epperatus used to measure natural-vibration-mode shapes. All
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